Silicates in the β Pictoris Debris Disk

Cicero X. Lu¹, **Christine H. Chen**^{1, 2}, B. A. Sargent^{1, 2}, Dan M. Watson³, Carey M. Lisse⁴, Mike Sitko ^{6,7}, Joel D. Green², Tushar Mittal⁵, Isabel Rebollido², Dean C. Hines², Michael Werner ⁸, Karl R. Stapelfeldt ⁸

¹ Johns Hopkins University, ² Space Telescope Science Institute, ³ University of Rochester, ⁴ Johns Hopkins University Applied Physics Laboratory, ⁵ Massachusetts Institute of Technology, ⁶ University of Cincinnati, ⁷ Space Science Institute, ⁸ Jet Propulsion Laboratory

Talk Outline

- New extraction of β pic Spitzer IRS spectrum
- Discovery of 18 and 23 μm features
- Spectral fitting of silicate features
- Trends as a function of stellocentric distance:
 - Grain shape
 - Fe abundance
 - Crystallinity

Beta Pic is an archetypal debris disk

ESO / A.- M. Lagrange, Composite

3/22/22

EAS 2021 Talk

Probing mineralogy in the βPic disk

- Subaru/COMICS 10 μm features reveal a crystalline silicate gradient in the βPic disk, but is limited by sky thermal background to 10 μm emission features.
- Spitzer is sensitive out to 35 μm . Do we see a crystalline gradient to a larger extent?

Olivine @ Green Sand Beach, Hawaii, US

• Are the forsterite grain emitting at the Spitzer IRS wavelength range also Mg-rich?

EAS 2021 Talk

Fe.

Effects of Grain Stoichiometry, Temperature and Shape on Spectral features

SED analysis reveals weak 3-5 μm Excess

First, we model stellar photosphere with a newly observed IRTF Spex spectra and photometry.

Discovery of new 18 and 23 μm Silicate features with Advanced Optimal Extraction

- The spectrum (This work) is extracted with the Advanced Optimal Extraction which weights every pixel by its SNR (Lebouteiller+10).
- Chen+07 spectrum uses a full-slit extraction.

Discovery of new 18 and 23 μm Silicate features with Advanced Optimal Extraction

Discovery of new 18 and 23 μm Silicate features with Advanced Optimal Extraction

Modeling spectrum -- Grain Temperatures

- --- Warm forsterite (300 K)
- Cool Enstatite (100 K)
- Warm Small Amorphous Pyroxene
- Optimal Extraction

Modeling spectrum – Stoichiometry (Mg-to-Fe ratio) & Grain shape distribution

Grain shape: Sphere

- The 18 μ m band is well-fitted by a 98.9 percent Mg-rich forsterite
- Such Mg-rich silicates grain composition shows that the parent bodies - planetesimals - are primitive and unprocessed, similar to the comets seen in the Kuiper belt in the solar system.

Modeling spectrum – Stoichiometry (Mg-to-Fe ratio) & Grain shape distribution

Grain shape Distribution: CDE 2

- The 23 μm feature is best fitted with CDE2.
- CDE stands for continuous distribution of ellipsoids.
- The grain shapes include oblates and prolates.

Grains are increasingly irregular as a function of wavelength.

Grain shape Distribution: CDE 1 ——— Warm forsterite (300 K) Cool Enstatite (100 K) --- Warm Enstatite (300 K) Warm Small Amorphous Pyroxene + Optimal Extraction 2 Flux [Jy] 0.1 5 10 20 35 Wavelength $[\mu m]$

- 28 & 35 µm feature is best fitted with CDE1 particle shape distribution.
- The spectral features requires even more extreme grain shapes such as needles and plates.

Fe abundance decreases a function of the stellocentric distance in the disk.

- Fe requires a higher condensation temperature than Mg.
- The inclusion of Fe in silicates is more commons in regions close to star where planetesimal collision velocity are higher than the outskirt of the disk.
- Water (liquid) might facilitate the production of Fe-rich silicates (Wood 2020).

Crystalline grain fraction increases as a function of stellocentric distance

- The Spitzer observation suggests that the crystalline fraction increases as the distance increases.
- The Subaru/COMICS spectra shows the crystalline grain are centered towards the star (Okamoto+05).
- Beam size is 10 times bigger for Spitzer compared to Subaru. The beam size different might be a cause.

- The disk contains cool (100 K) and warm (300K) dust population from spectral modeling.
- SED analysis shows evidence of a weak 3-5 micron excess.
- The Mg-rich stoichiometry from newly discovered 18 μ m feature indicates that the both cool and warm planetesimals are primitive and unprocessed, similar to Kuiper Belt objects.
- The grain shape, Fe abundance and crystallinity changes as a function of wavelength.
- Future work:
 - Study the dust grain properties at the CO clump location to understand the origin of CO clump
 - JWST MIRI will study the disk at higher angular resolution

Effects of Grain Stoichiometry, Temperature and Shape on Spectral features

